4,587 research outputs found

    Effect of pyramiding Bt and CpTI genes on resistance of cotton to Helicoverpa armigera (Lepidoptera: Noctuidae) under laboratory and field conditions

    Get PDF
    Transgenic cotton (Gossypium hirsutum L.) varieties, adapted to China, have been bred that express two genes for resistance to insects. the Cry1Ac gene from Bacillus thuringiensis (Berliner) (Bt), and a trypsin inhibitor gene from cowpea (CpTI). Effectiveness of the double gene modification in conferring resistance to cotton bollworm, Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae), was studied in laboratory and field experiments. In each experiment, performance of Bt+CpTI cotton was compared with Bt cotton and to a conventional nontransgenic variety. Larval survival was lower on both types of transgenic variety, compared with the conventional cotton. Survival of first-, second-, and third-stage larvae was lower on Bt+CpTI cotton than on Bt cotton. Plant structures differed in level of resistance, and these differences were similar on Bt and Bt+CpTI cotton. Likewise, seasonal trends in level of resistance in different plant structures were similar in Bt and Bt+CpTI cotton. Both types of transgenic cotton interfered with development of sixth-stage larvae to adults, and no offspring was produced by H. armigera that fed on Bt or Bt+CpTI cotton from the sixth stage onward. First-, second-, and third-stage larvae spent significantly less time feeding on transgenic cotton than on conventional cotton, and the reduction in feeding time was significantly greater on Bt+CpTI cotton than on Bt cotton. Food conversion efficiency was lower on transgenic varieties than on conventional cotton, but there was no significant difference between Bt and Bt+CpTI cotton. In 3-yr field experimentation, bollworm densities were greatly suppressed on transgenic as compared with conventional cotton, but no significant differences between Bt and Bt+CpTI cotton were found. Overall, the results from laboratory work indicate that introduction of the CpTI gene in Bt cotton raises some components of resistance in cotton against H. armigera, but enhanced control of H. armigera under field conditions, due to expression of the CpTI gene, was not demonstrate

    Regulation of Irregular Neuronal Firing by Autaptic Transmission

    Get PDF
    The importance of self-feedback autaptic transmission in modulating spike-time irregularity is still poorly understood. By using a biophysical model that incorporates autaptic coupling, we here show that self-innervation of neurons participates in the modulation of irregular neuronal firing, primarily by regulating the occurrence frequency of burst firing. In particular, we find that both excitatory and electrical autapses increase the occurrence of burst firing, thus reducing neuronal firing regularity. In contrast, inhibitory autapses suppress burst firing and therefore tend to improve the regularity of neuronal firing. Importantly, we show that these findings are independent of the firing properties of individual neurons, and as such can be observed for neurons operating in different modes. Our results provide an insightful mechanistic understanding of how different types of autapses shape irregular firing at the single-neuron level, and they highlight the functional importance of autaptic self-innervation in taming and modulating neurodynamics.Comment: 27 pages, 8 figure

    Astragaloside IV Ameliorates Airway Inflammation in an Established Murine Model of Asthma by Inhibiting the mTORC1 Signaling Pathway

    Get PDF
    Astragaloside IV (AS-IV), a main active constituent of Astragalus membranaceus, has been confirmed to have antiasthmatic effects. However, it remained unclear whether the beneficial effects of AS-IV on asthma were attributed to the mTOR inhibition; this issue was the focus of the present work. BALB/c mice were sensitized and challenged with ovalbumin followed with 3 weeks of rest/recovery and then reexposure to ovalbumin. AS-IV was administrated during the time of rest and reexposure. The characteristic features of allergic asthma, including airway hyperreactivity, histopathology, cytokines (IL-4, IL-5, IL-13, IL-17, and INF-γ), and CD4+CD25+Foxp3+Treg cells in bronchoalveolar lavage fluid (BALF), and downstream proteins of mTORC1/2 signaling were examined. AS-IV markedly suppressed airway hyperresponsiveness and reduced IL-4, IL-5, and IL-17 levels and increased INF-γ levels in the BALF. Histological studies showed that AS-IV markedly decreased inflammatory infiltration in the lung tissues. Notably, AS-IV inhibited mTORC1 activity, whereas it had limited effects on mTORC2, as assessed by phosphorylation of mTORC1 and mTORC2 substrates S6 ribosomal protein, p70 S6 Kinase, and Akt, respectively. CD4+CD25+Foxp3+Treg cells in BALF were not significantly changed by AS-IV. Together, these results suggest that the antiasthmatic effects of AS-IV were at least partially from inhibiting the mTORC1 signaling pathway

    Ti₃C₂ MXene-based Schottky Photocathode for Enhanced Photoelectrochemical Sensing

    Get PDF
    Nanomaterials are vital to the realization of photoelectrochemical (PEC) sensing platfrom that provides the sensitive detection and quantification of low-abundance biological samples. Here, this work reports a Schottky junction-based BiOI/Ti₃C₂ heterostructure, used as a photocathode for PEC bioanalysis. Specially, we realize in situ growth of flower-like BiOI on 2D intrinsically negatively charged Ti₃C₂ MXene nanosheet that endows BiOI/Ti₃C₂ heterostructure with admirably combined merits, noting in particular the generation of built-in electric field and the decrease of contact resistance between BiOI and Ti₃C₂. Under the visible light irradiation, the BiOI/Ti₃C₂ heterostructure-modified PEC platform displays superior cathodic photocurrent signal, while PEC response cuts down with the presence of L-Cysteine (L-Cys) as a representative analyte owing to the metal-S bond formation. The “signal-off” PEC sensing strategy shows good performance in terms of sensitivity, limit of detection (LOD, 0.005 nM) and stability. This research reveals the great potentials of MXene-based heterostructure in the application field of PEC sensor establishment

    Crossover between Weak Antilocalization and Weak Localization of Bulk States in Ultrathin Bi2Se3 Films

    Full text link
    We report transport studies on the 5 nm thick Bi2Se3 topological insulator films which are grown via molecular beam epitaxy technique. The angle-resolved photoemission spectroscopy data show that the Fermi level of the system lies in the bulk conduction band above the Dirac point, suggesting important contribution of bulk states to the transport results. In particular, the crossover from weak antilocalization to weak localization in the bulk states is observed in the parallel magnetic field measurements up to 50 Tesla. The measured magneto-resistance exhibits interesting anisotropy with respect to the orientation of B// and I, signifying intrinsic spin-orbit coupling in the Bi2Se3 films. Our work directly shows the crossover of quantum interference effect in the bulk states from weak antilocalization to weak localization. It presents an important step toward a better understanding of the existing three-dimensional topological insulators and the potential applications of nano-scale topological insulator devices

    DRSN4mCPred: accurately predicting sites of DNA N4-methylcytosine using deep residual shrinkage network for diagnosis and treatment of gastrointestinal cancer in the precision medicine era

    Get PDF
    IntroductionThe DNA N4-methylcytosine (4mC) site levels of those suffering from digestive system cancers were higher, and the pathogenesis of digestive system cancers may also be related to the changes in DNA 4mC levels. Identifying DNA 4mC sites is a very important step in studying the analysis of biological function and cancer prediction. Extracting accurate features from DNA sequences is the key to establishing a prediction model of effective DNA 4mC sites. This study sought to develop a new predictive model, DRSN4mCPred, which aimed to improve the performance of the predicting DNA 4mC sites.MethodsThe model adopted multi-scale channel attention to extract features and used attention feature fusion (AFF) to fuse features. In order to capture features information more accurately and effectively, this model utilized Deep Residual Shrinkage Network with Channel-Wise thresholds (DRSN-CW) to eliminate noise-related features and achieve a more precise feature representation, thereby, distinguishing the sites in DNA with 4mC and non-4mC. Additionally, the predictive model incorporated an inverted residual block, a Multi-scale Channel Attention Module (MS-CAM), a Bi-directional Long Short Term Memory Network (Bi-LSTM), AFF, and DRSN-CW.Results and DiscussionThe results indicated the predictive model DRSN4mCPred had extremely good performance in predicting the DNA 4mC sites across different species. This paper will potentially provide support for the diagnosis and treatment of gastrointestinal cancer based on artificial intelligence in the precise medical era

    User-adaptive sketch-based 3D CAD model retrieval

    Get PDF
    3D CAD models are an important digital resource in the manufacturing industry. 3D CAD model retrieval has become a key technology in product lifecycle management enabling the reuse of existing design data. In this paper, we propose a new method to retrieve 3D CAD models based on 2D pen-based sketch inputs. Sketching is a common and convenient method for communicating design intent during early stages of product design, e.g., conceptual design. However, converting sketched information into precise 3D engineering models is cumbersome, and much of this effort can be avoided by reuse of existing data. To achieve this purpose, we present a user-adaptive sketch-based retrieval method in this paper. The contributions of this work are twofold. Firstly, we propose a statistical measure for CAD model retrieval: the measure is based on sketch similarity and accounts for users’ drawing habits. Secondly, for 3D CAD models in the database, we propose a sketch generation pipeline that represents each 3D CAD model by a small yet sufficient set of sketches that are perceptually similar to human drawings. User studies and experiments that demonstrate the effectiveness of the proposed method in the design process are presented

    Correlation-driven eightfold magnetic anisotropy in a two-dimensional oxide monolayer.

    Get PDF
    Engineering magnetic anisotropy in two-dimensional systems has enormous scientific and technological implications. The uniaxial anisotropy universally exhibited by two-dimensional magnets has only two stable spin directions, demanding 180° spin switching between states. We demonstrate a previously unobserved eightfold anisotropy in magnetic SrRuO3 monolayers by inducing a spin reorientation in (SrRuO3)1/(SrTiO3) N superlattices, in which the magnetic easy axis of Ru spins is transformed from uniaxial 〈001〉 direction (N < 3) to eightfold 〈111〉 directions (N ≥ 3). This eightfold anisotropy enables 71° and 109° spin switching in SrRuO3 monolayers, analogous to 71° and 109° polarization switching in ferroelectric BiFeO3. First-principle calculations reveal that increasing the SrTiO3 layer thickness induces an emergent correlation-driven orbital ordering, tuning spin-orbit interactions and reorienting the SrRuO3 monolayer easy axis. Our work demonstrates that correlation effects can be exploited to substantially change spin-orbit interactions, stabilizing unprecedented properties in two-dimensional magnets and opening rich opportunities for low-power, multistate device applications

    Gut Bacterial Communities of Lymantria xylina and Their Associations with Host Development and Diet

    Get PDF
    The gut microbiota of insects has a wide range of effects on host nutrition, physiology, and behavior. The structure of gut microbiota may also be shaped by their environment, causing them to adjust to their hosts; thus, the objective of this study was to examine variations in the morphological traits and gut microbiota of Lymantria xylina in response to natural and artificial diets using high-throughput sequencing. Regarding morphology, the head widths for larvae fed on a sterilized artificial diet were smaller than for larvae fed on a non-sterilized host-plant diet in the early instars. The gut microbiota diversity of L. xylina fed on different diets varied significantly, but did not change during different development periods. This seemed to indicate that vertical inheritance occurred in L. xylina mutualistic symbionts. Acinetobacter and Enterococcus were dominant in/on eggs. In the first instar larvae, Acinetobacter accounted for 33.52% of the sterilized artificial diet treatment, while Enterococcus (67.88%) was the predominant bacteria for the non-sterilized host-plant diet treatment. Gut microbe structures were adapted to both diets through vertical inheritance and self-regulation. This study clarified the impacts of microbial symbiosis on L. xylina and might provide new possibilities for improving the control of these bacteria
    corecore